

Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window

Motivation

Suppose a set of routers are monitoring a network. To allow an early detection of a Distributed Denial-of-service (DDoS) attack, we need to answer at any time:

In the IP packets received by all the routers over the last hour, does there exist any frequent destination address?

The problem is to *minimize the communication overhead* to maintain such statistics.

Distributed Data Stream Model

We have $k \ge 1$ remote sites and a single root (or coordinator) distant apart.

• Each remote site is monitoring a stream of items, where each item contains an item label and a timestamp.

As the stream contains a massive volume of data items, the remote site cannot store the whole stream for processing, and hence each remote site can only maintain an *approximation of some stream statistics* on its own stream.

■ The root is required to compute the (approximate) *global statistics* on the union of the *k* streams.

• Only communication between the root and each remote site is allowed; remote sites cannot communicate with each other. This restriction is practical; e.g., in a sensor network, the sensors are cheap devices with limited processing power and memory, and they cannot communicate with each other.

Algorithms in this model are *communication protocols* for the root and remote sites. They can be classified into two types:

- **Two-way algorithms**: bi-directional communication between the root and remote sites are allowed.
- One-way algorithms: only the remote sites are allowed to communicate with the root and the root cannot send message to any remote site.

One-way algorithms are usually simple and thus easy to implement, as each remote site has only local information about its own stream; the best the remote site can do is to update the root if its local statistics deviate too much from the one it previously sent to the root.

Two-way communication allows more sophisticated algorithm. Thus, it is believed that two-way algorithms are more communication-efficient than one-way algorithms.

Stream Statistics

We study algorithms that enable the root to answer the following classical ε -approximate queries, where $0 < \varepsilon \le 1$ is a user-specified error bound. Let c be the total count of all items in the stream.

Basic Counting: Estimate the total count c with absolute error c.

Frequent Items: Let $0 < \phi \le 1$ be a user-specified threshold. The query asks for *a set of items*, which contains

- all frequent items appearing at least ϕ c times.
- some items appearing at least $(\phi \varepsilon) c$ times.

It is well-known that to return frequent items, it suffices to answer **Approximate Counting**: Estimate the count of \underline{any} item with absolute error εc .

Quantiles: Given any $0 < \phi \le 1$, in the sorted order of all items in the stream, return an item with rank in $[(\phi - \varepsilon) c, (\phi + \varepsilon) c]$.

Stream statistics can be computed over

- whole data stream
- a sliding window of recent items: all items with timestamps in the most recent W time units, where W is the window size.

Sliding window is more difficult to handle as items will expire.

Previous and Our Results

All previous work focuses on the *whole data stream* setting. Let *N* be the number of items in all the *k* streams.

- Basic Counting: $O(\frac{k}{\epsilon} \log \frac{N}{k})$ words (one-way) [2]
- Frequent Items / Approximate Counting: $O(\frac{k}{\varepsilon^2}\log\frac{N}{k}) \text{ words } (\textit{one-way}) \text{ [1]}; \quad O(\frac{k}{\varepsilon}\log\frac{N}{k}) \text{ words } (\textit{two-way}) \text{ [4]}$
- Quantiles:

$$O(\frac{k}{\varepsilon^2}\log\frac{N}{k})$$
 words (one-way) [1]; $O(\frac{k}{\varepsilon}\log^2(\frac{1}{\varepsilon})\log\frac{N}{k})$ words (two-way) [4]

Our results [3] extend the above study to the *sliding window* setting. Let *N* be the number of items in all the *k* streams that *arrive or expire* within the current sliding window of *W* time units. We show *upper bounds* of one-way algorithms and lower bounds for any two-way algorithms.

- Basic Counting: $\Theta(\frac{k}{\varepsilon}\log\frac{\varepsilon N}{k})$ bits (this result also improves that in [2])
- Frequent Items / Approximate Counting:

$$O(\frac{k}{\varepsilon} \log \frac{N}{k})$$
 words $\Omega(\frac{k}{\varepsilon} \log \frac{\varepsilon N}{k})$ words

• Quantiles:

$$O(\frac{k}{\varepsilon^2}\log\frac{N}{k})$$
 words $O(\frac{k}{\varepsilon}\log\frac{\varepsilon N}{k})$ words

Our upper bounds match or nearly match the lower bounds, which reveals that for these statistics, two-way algorithms could not be much better than one-way algorithms in the worst case.

Basic Counting

Algorithm. Let $\lambda - \varepsilon/9$.

Each remote site: keeps an \(\lambda\)-approximate local count.

Let c_{cur} and c_{old} be current estimate and the previously sent estimate. At any time, it updates the root about c_{cur} if the following event occurs

- Up event: $c_{cur} c_{old} > 4\lambda c_{old}$
- Down event: c_{old} c_{cur} > 4λ c_{old}

The root: upon a query, returns the sum of all the k estimates received.

Analysis techniques. In a remote site, let n be the number of items arriving or expiring in the current sliding window $[t_1, t_2]$. If items do not expire, only Up's occur. When an Up occurs, n increases by a fraction of $(1+\Theta(\varepsilon))$, so no. of Up's is $O(\log_{1+\varepsilon}\varepsilon n) = O(\frac{1}{\varepsilon}\log\varepsilon n)$. Expiry of items destroys the monotonic property of n. Our idea is to define a *characteristic set* of items as a new measure of progress.

- *Up* event: The set is the items *arriving* from t_1 up to the time the Up occurs. When an Up occurs, the size of this set increases by a fraction of $(1+\Theta(\varepsilon))$, and thus the no. of Up's is $O(\frac{1}{\varepsilon}\log \varepsilon n)$.
- Down event: The set is the items expiring from t_1 up to the time the Down occurs. Similarly, the no. of Down's is $O(\frac{1}{\varepsilon} \log \varepsilon n)$.

The total no. of events is $O(\frac{k}{\varepsilon} \log \frac{\varepsilon N}{k})$. To reduce message size, we *restrict* the estimates to a predefined set, giving the required upper bound.

Approximate Counting

Algorithm. Let $\lambda = \varepsilon/11$.

Each remote site: keeps an λ -approximate item count $c_{cur}(j)$ for each item j, and an $\lambda/6$ -approximate total count c_{cur} .

At any time, for each item j, it updates $c_{cur}(j)$ if the following event occurs

- Up event: $c_{cur}(j) c_{old}(j) > 9\lambda c_{cur}$
- Down event: $c_{old}(j) c_{cur}(j) > 9\lambda c_{cur}$

The root: upon a query on item j, returns the total estimate of j received.

Analysis techniques. Up's can be caused by a *big increase of item j*, or a small increase of j but *significant drop of* c_{cur} , which requires different characteristic set analysis. Furthermore, the communication cost would depend on the no. of possible items. We observe that if $c_{cur}(j) < 3\lambda c_{cur}$, we can treat $c_{cur}(j) = 0$ and stop updating j until $c_{cur}(j) \ge 3\lambda$. This keeps $O(\frac{1}{\epsilon})$ 'active' items at any time, leading to the required upper bound.

References

- [1] Cormode, Garofalakis, Muthukrishnan, Rastogi. *Holistic aggregates in a networked world: distributed tracking of approximate quantiles*. SIGMOD 2005.
- [2] Keralapura, Cormode, Ramamirtham. *Communication-efficient distributed monitoring of thresholded counts*. SIGMOD 2006.
- [3] Chan, Lam, Lee, Ting. Continuous monitoring of distributed data streams over a time-based sliding window. STACS 2010.
- [4] Yi, Zhang. Optimal tracking of distributed heavy hitters and quantiles. PODS 2009.